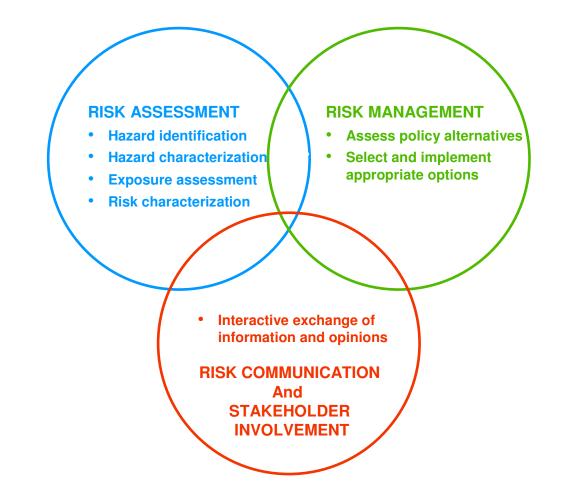
Integration of social and natural sciences to develop improved tools for assessing and managing food chain risks affecting the rural economy

Gary Barker Institute of Food Research Norwich

Project partners


Person responsible	Organisation
Richard Shepherd	University of Surrey
Andy Hart	Central Science Laboratory
Gary Barker	Institute of Food Research
Simon French	Manchester University Business School
John Maule	Leeds University Business School

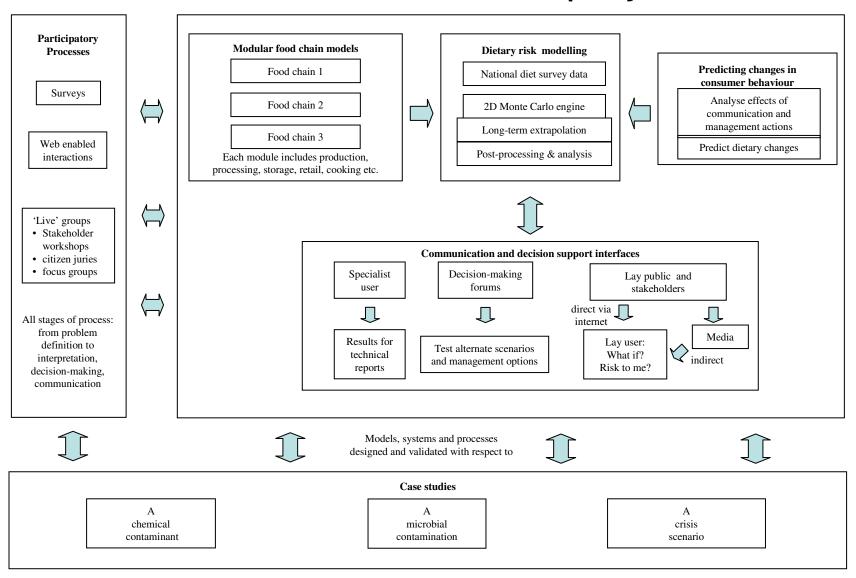
Project objectives

- Develop interactive web-enabled tools for quantitative assessment of risks and uncertainty
- Use participatory methods to ensure web-enabled tools, etc. appropriate for stakeholders
- Develop methods to predict consumer behaviour driven by perceptions of risk and uncertainty
- Develop improved methods for communicating with stakeholders
- Test, evaluate and demonstrate improved approaches in case studies of food contamination and microbiological hazards

Food borne hazards - Risks

- Multiple views
 - Science and statistics
 - Social, political, economic
- Multiple stakeholders
 - Consumers, caterers, producers, farmers, regulators

Food borne hazards - domains & uncertainty


- Known domain
- Knowable domain
- Complex domain
- Chaos domain
- The public want information on uncertainty
 - Early indications on uncertainty engender honesty
 - Subsequent indications on uncertainty lead to problems with credibility

- Information domain
 - Complexity, uncertainty, dependency
- There are multiple forms of uncertainty
 - Information uncertainty
 - Population variability
- The public are more accepting of uncertainty when it is due to the scientific process than when it is due to lack of interest or inaction

Project modules

- Participatory processes
- Dietary risk modelling
- Modular food chain models
- Predicting changes in consumer behaviour
- Communication and decision support interfaces
- Case studies

Modules within the project

Participatory processes

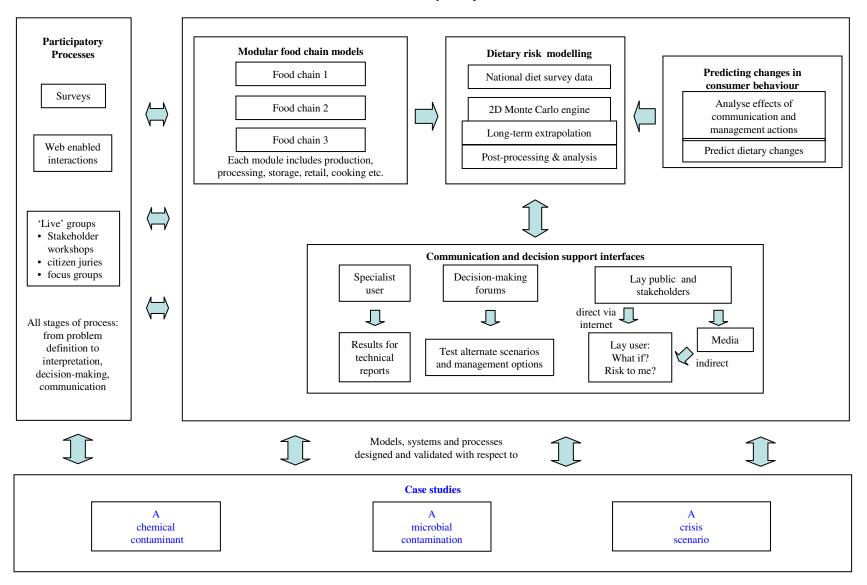
- Information flows that promote and inform the domain description
- Participatory methods
 - Stakeholder workshops
 - Citizens' juries
 - Focus groups
 - Scenarios to stimulate discussion
- Runs throughout project to:
 - Inform initial developments and ensure processes and web-enabled tools appropriate for stakeholders
 - Test in case studies
- Input into all other modules

Dietary risk modelling

- Integrate information on hazards with detailed information on consumption (NDNS)
- Develop web-based tools based on CSL probabilistic tool
- Probabilistic methods of risk assessment:
 - Take account of variability and uncertainty
 - Usually aimed at specialists
- Hierarchical 2D Monte Carlo to quantify uncertainties
- Expand to include:
 - Other contaminants and pathogens
 - Long term exposures
 - Suitable for non-technical users
 - 'What if' tools
- Input into communication and decision support interfaces

Modular food chain models

- Systematically quantify the dependencies and the uncertainties that are associated with individual elements of food safety assessments (FSO)
- Modularisation of food chain
 - Production, processing, storage, consumption
- Dependencies across the chain
 - loads as a function of control measures, performance criteria
- Build set of uncertainty distributions
- Input into dietary risk modelling


Predicting changes in consumer behaviour

- Assess the impact of risk communication and management actions on consumer behaviour and particularly on food choice
- Issues addressed:
 - Risk information v direct recommendation
 - Personal relevance of information
 - Presentation of uncertainty
 - Numerical/verbal presentation of uncertainty
- Experimental (between subjects) studies
- Input into dietary risk modelling

Communication and decision support interfaces

- Identify processes and tools that have the greatest potential for communicating information about food chain risks and their associated uncertainties
- Evaluate different approaches to risk communication (risk comparators, frequency representations)
- Specialist users
 - Technical reports and data representations
- Decision-making forum
 - Alternative scenarios and management options
- Lay public and stakeholders
 - Internet (dynamic information)
 - 'what if' structured queries
 - risk to me
 - Media (aligned sources)

Modules within the project

Case studies

- Chemical pesticide
 - Strongly quantified (data rich)
 - Spatial source (farm use)
 - Probabilistic modelling
- Microbiological cross contamination with campylobacter
 - Chicken production often identified as a source
 - Domestic hygiene, catering facilities as risk factors
- Scenario with unanticipated risk
 - Hypothetical scenarios
 - Communications strategy for rapid response
 - Communications strategy with forwards look

Conclusion

- Interdisciplinary research & case studies
 - Natural sciences
 - Social science
- Quantitative assessment and modelling of risks and uncertainty across the food chain
- Stakeholder involvement and participatory processes
- Effective communication with the public and stakeholders

